
Package: htmldf (via r-universe)
August 27, 2024

Title Simple Scraping and Tidy Webpage Summaries

Version 0.6.0

Author Alastair Rushworth

Maintainer Alastair Rushworth <alastairmrushworth@gmail.com>

Description Simple tools for scraping webpages, extracting common html
tags and parsing contents to a tidy, tabular format. Tools
help with extraction of page titles, links, images, rss feeds,
social media handles and page metadata.

License GPL-2

Imports cld3, dplyr, httr, lubridate, magrittr, processx, progress,
R.utils, ranger, rvest, stringr, tibble, tidyr, tools,
urltools, xml2

Depends R (>= 3.5.0)

Encoding UTF-8

Language en_GB

URL https://github.com/alastairrushworth/htmldf/

BugReports https://github.com/alastairrushworth/htmldf/issues

RoxygenNote 7.1.2

Suggests testthat

Repository https://alastairrushworth.r-universe.dev

RemoteUrl https://github.com/alastairrushworth/htmldf

RemoteRef HEAD

RemoteSha 73f604f9ac428a3243553d79950c9b4e0d68d395

Contents
html_df . 2

Index 5

1

https://github.com/alastairrushworth/htmldf/
https://github.com/alastairrushworth/htmldf/issues

2 html_df

html_df Get a tabular summary of webpage content from a vector of urls

Description

From a vector of urls, html_df() will attempt to fetch the html. From the html, html_df() will
attempt to look for a page title, rss feeds, images, embedded social media profile handles and other
page metadata. Page language is inferred using the package cld3 which wraps Google’s Compact
Language Detector 3.

Usage

html_df(
urlx,
max_size = 5e+06,
wait = 0,
retry_times = 0,
time_out = 30,
show_progress = TRUE,
keep_source = TRUE,
chrome_bin = NULL,
chrome_args = NULL,
...

)

Arguments

urlx A character vector containing urls. Local files must be prepended with file://.

max_size Maximum size in bytes of pages to attempt to parse, defaults to 5000000. This
is to avoid reading very large pages that may cause read_html() to hang.

wait Time in seconds to wait between successive requests. Defaults to 0.

retry_times Number of times to retry a URL after failure.

time_out Time in seconds to wait for httr::GET() to complete before exiting. Defaults
to 30.

show_progress Logical, defaults to TRUE. Whether to show progress during download.

keep_source Logical argument - whether or not to retain the contents of the page source
column in the output tibble. Useful to reduce memory usage when scraping
many pages. Defaults to TRUE.

chrome_bin (Optional) Path to a Chromium install to use Chrome in headless mode for scrap-
ing

chrome_args (Optional) Vector of additional command-line arguments to pass to chrome

... Additional arguments to ‘httr::GET()‘.

html_df 3

Value

A tibble with columns

• url the original vector of urls provided

• title the page title, if found

• lang inferred page language

• url2 the fetched url, this may be different to the original, for example if redirected

• links a list of tibbles of hyperlinks found in <a> tags

• rss a list of embedded RSS feeds found on the page

• tables a list of tables found on the page in descending order of size, coerced to tibble
wherever possible.

• images list of tibbles containing image links found on the page

• social list of tibbles containing twitter, linkedin and github user info found on page

• code_lang numeric indicating inferred code language. A negative values near -1 indicates
high likelihood that the language is python, positive values near 1 indicate R. If not code tags
are detected, or the language could not be inferred, value is NA.

• size the size of the downloaded page in bytes

• server the page server

• accessed datetime when the page was accessed

• published page publication or last updated date, if detected

• generator the page generator, if found

• status HTTP status code

• source character string of xml documents. These can each be coerced to xml_document for
further processing using rvest using xml2:read_html().

Author(s)

Alastair Rushworth

Examples

Examples require an internet connection...
urlx <- c("https://github.com/alastairrushworth/htmldf",

"https://alastairrushworth.github.io/")
dl <- html_df(urlx)
preview the dataframe
head(dl)
social tags
dl$social
page titles
dl$title
page language
dl$lang
rss feeds
dl$rss

4 html_df

inferred code language
dl$code_lang
print the page source
dl$source

Index

html_df, 2

5

	html_df
	Index

